
DATABASES

Exploiting Relational
Database
Technology in GIS
Peter Batty

All systems for managing data face common problems such as backup, recovery, auditing, security,
data integrity and concurrent update. Other challenges include the ability to share data easily
between applications and to distribute data across several computers, while continuing to manage
the problems already mentioned. Geographic information systems are no exception, and need to
tackle all these issues.

Standard relational database management systems provide many features to help solve the issues
mentioned so far. This article describes how the IBM geoManager product approaches these issues
by storing all its geographic data in a standard relational database product in order to take
advantage of such features. Areas in which standard relational database functions need to be
extended are highlighted, and the way in which geoManager does this is explained. The performance
implications of storing all data in the relational database are discussed.

An important distinction is made between the storage and management of geographic data and
the manipulation and analysis of geographic data, which needs to be made when considering the
applicability of relational database technology to GIS.

Introduction

THIS ARTICLE looks at some of the issues in
volved in implementing a large corporate data
base containing geographic information. First a

brief categorisation of 'non-database approaches' to
storing geographic data is given. A description follows
of the way that the IBM geoManager product
approaches geographic data management using a
standard relational database management system.

The article then examines a number of database issues,
discussing the ways in which standard relational database
functions can help a GIS address these, and also high
lighting where extra functions are required for a GIS. In
each case the approach taken by geoManager is com
pared with a non-database approach. Finally the per
formance implications of taking the geoManager
approach are discussed, and the arguments presented
are summarised in a conclusion.

Throughout this article the examples given refer to
geoManager and DB2, IBM's relational database product
which runs under the MVS operating system. The first'
release of geoManager also runs under the VM operating
system using the SQLlDS database product. The argu
ments given are by no means specific to these database

products but apply in general to any relational database
management systems used in the way described in this
article.

Alternative approaches to storing
geographic data
Non-database approaches

Most Geographic Information Systems store graphics
and some or all geographic information in specialised
data structures, and store alphanumeric attribute infor
mation in a standard database management system,
often a relational one.

Various reasons are cited for this approach, the most
important of which is generally agreed to be perform
ance. Relational databases are designed primarily for
managing alphanumeric data, not for rapid display of
graphical information or certain kinds of complex pro
cessing such as some types of geographical analysis, so
there are issues to be addressed in this area, which willbe
discussed later.

Clearly these generalised statements cover a very wide
range of approaches to storage of geographic informa-

MAPPING AWARENESS VOL. 4 NO.6 JUL Y/AUGUST 1990

DATABASES

tion. However, for the purposes of this article the import
ant fact which distinguishes these approaches is that they
do not store all aspects of their geographic data in a single
database management system. In the rest of this article,
these will be referred to as non-database approaches.

The GFIS database approach
IBM's Geographic Facilities Information System (GFIS)

takes an object-based approach to storing geographic
information, rather than a map-based approach. (Note
that the term 'object-based', as used in this article, is not
synonymous with the term 'object-oriented', which has a
quite specific meaning in computer science. With an
object-oriented system relationships between objects are
stored as an integral part of the database. With the object
based approach referred to in this article, relationships
between objects are maintained by applications using
software tools which are provided.) All the information
for an object, including alphanumeric attributes, geo
graphical location, network relationships and graphical
representation, is stored together as a single logical object
in the relational database. The GFIS database has no

system of tiling or pre-defined maps, just a continuous set
of objects. The appropriate tables are created and
managed by the geoManager product. Attribute fields
stored in the database for each object include the
following:

• Spatial index key - used to cluster data efficiently and
optimise area retrievals (discussed in more detail in the
section on performance).

• Object extents (min x, min y, max x, max y) - used for
area retrieval.

• Absolute points and point connectors - network nodes
which are used for network retrieval.

• Detailed graphics (for example the co-ordinates of a
multi-point line) are stored in a compact binary format
in a variable length character string.

• Alphanumeric attributes.

Geographic analysis and graphical display is not done
directly against the geoManager data structure. An
important distinction is drawn in this article between the
storage and management of geographic data and the
manipulation and analysis of geographic data. When
looking at the manipulation and analysis of geographic
data, different data structures are appropriate for different
kinds of application. For example, the data structure used
by IBM's Graphics Program Generator product (GPG) is
extremely efficient for complex network analysis, while a
raster or quadtree data structure such as that used by
Tydac Technologies' SPANS™ 1 is much more efficient
than a vector data structure for overlaying several sets of
polygons. However, it is highly desirable to have some
means of storing and managing geographic data in a way
which allows it to be accessed by multiple geographic and
non-geographic applications within a consistent environ
ment. The geoManager approach is intended to provide
an integrated corporate database which fulfils this role.

When a user wants to work with some geographic
data, he makes a request to geoManager specifying the
geographic area of interest and the objects required
within that area (for example buildings, roads and
sewers). It is possible for geoManager to extract the
requested objects from the database in one of the follow
ing three formats:

1 SPANS is a trademark of Tydac Technologies Corporation.

Figure 1. GFIS Architecture, including SPANS as an
example of a third party GIS.

1. The Interface Format File (IFF), which contains
graphical, alphanumeric and relationship information, .
and is used to pass data to GPG or other GIS
packages for full function GIS applications.

2. The Open Format File, which contains just selected
alphanumeric data, and can be used to pass data to
other applications such as report generators or spread
sheets.

3. The geoManager Graphic Analysis Format, which
contains just graphical data, together with a database
key for each object which refers to the relevant attri
butes in the database. This is used by the geoManager
Graphic Analysis application which provides functions
to display, pan and zoom these graphics on any
standard business graphics terminal, as well as the
capability of viewing and updating alphanumeric data
and performing various types of simple analysis and
reporting.

When an IFF extract is requested, the user must specify
whether any of the retrieved objects may be updated. If
so then geoManager puts locks on the appropriate
objects so that they cannot be updated by other users.
This is discussed in more detail in the section on con

current update. Any changes made in the GIS application
are passed back to geoManager in an IFF, and this up
dates the database and releases the locks.

Database issues

Backup and recovery
Regular backups need to be made of any database

system in order to be able to restore the database in the
event of a major system failure. The larger the database,
the longer it will take to back up, and therefore there may
be a reasonable length of time between backups. In order
to provide the capability of restoring a system to a state
which is more recent than that of most recent full backup,
database systems such as DB2 provide the ability to log
all transactions against the database. This transaction log
can be saved on tape much more regularly than a full
backup can be done, since the data volumes involved are
much smaller. When restoring a database from the back
up tapes, the most recent full backup of the database is
restored, and the transaction log can then be applied to
this to bring it to the most up to date state possible. DB2
also provides facilities to back up individual tables, or
parts of large tables, so a full backup can be done more
quickly by running concurrent jobs to back up different
parts of the database.

MAPPING AWARENESS VOL. 4 NO.6 JUL Y/AUGUST 1990

DATABASES

Since geoManager stores all GFIS data in DB2, it can
exploit all these capabilities automatically. However, a
system which stored its graphics in a separate database
would have to write a specific logging mechanism for
graphical transactions (which included a mechanism for
synchronising this log with the log for alphanumeric
transactions), in order to provide the same recovery
capability.

Security
In a corporate GIS with many users, it is vital to be able

to control access to the GIS data. The three main types of
access to data are update, read only, or no access. These
categories may be subdivided further. For example,
geoManager provides three types of update privilege: the
ability to create entirely new data; the ability to make
structural updates to existing data (i.e. change graphics or
network connectivity); and the ability to update attribute
data only. It is necessary to be able to grant these privi
leges at an object level, since some users may be per
mitted to update or view certain objects but not others.
This requirement applies equally to both graphical and
alphanumeric aspects of the data.

DB2 provides standard facilities to provide read, up
date, insert and delete authority on any table for any
user. Since the three types of update required by geo
Manager do not correspond exactly to these DB2 update
authorities, the geoManager application implements its
own security mechanism at an object level. This security
mechanism is complemented by the standard DB2 access
control mechanism, which controls access to the data by
non-geoManager users. In this way privileges for all users
can be controlled in the appropriate way.

It is generally easier to provide a flexible approach to
security using an object-based system rather than a map
based system. If the basic unit of information being
handled is a map, or a layer of a map, then it is likely to
be more difficultto restrict access to certain objects within
a layer than it is if objects are the basic unit of information
being handled.

Data integrity
There are many data integrity issues which need to be

considered in a corporate GIS. This section looks at some
of these issues, and the following section looks at con
current update, which is one particular aspect of data
integrity which is particularly complicated in a GIS com
pared to most applications.

A fundamental issue is ensuring that graphics and
alphanumeric data are maintained in synchronisation
with each other. At the very simplest level this means
ensuring that when a graphic record is deleted the cor
responding alphanumeric record is deleted, for example.
This is not an issue in GFIS because of its integrated
object-based approach. However, in a system where
alphanumeric and graphical data are stored in separate
databases, the system must ensure that this sort of syn
chronisation is maintained.

Synchronisation at this simple level should be straight
forward to achieve, but there are far more subtle issues in
the same area. Suppose that an operation has been
carried out which changes both alphanumeric and
graphical data for an object, and that in the process of
saving the results of the operation in the database(s), the
transaction fails. If at this stage the graphical change has
been saved but the alphanumeric change has not, then

Figure 2. GFIS Architecture showing examples of inte
gration with other applications.

the two are out of synchronisation. The system must be
capable of recognising this, and either rolling back the
graphical change which has been made or ensuring the
alphanumeric change is also made. It would be extremely
difficult to provide this level of data integrity in a system
where the graphics are stored in their own data structure.
However, DB2 provides function which geoManager
exploits to provide exactly this sort of capability. When a

_group of related transactions are being carried out on the
database, they will not be committed until they have all
been completed successfully. If the update process fails at
any stage then all the updates which have been made will
be rolled back so that everything remains synchronised.

Data integrity issues also arise if relationships exist
between objects which have been extracted from the
database for update and other objects which have not
been extracted. The geoManager system handles this by
marking such objects as 'partially retrieved', which re
stricts the type of update operations which can be done
on these objects in GPG. For example, if a pipe was
extracted which crossed the selected area, and this was
connected to pipes which were outside the selected area
and therefore not extracted, then that pipe would be
marked as partially retrieved. GPG would then not allow
the ends of that pipe to be moved, for example, since that
would cause the integlity of the network connectivity to
be lost.

Concurrent update
A key issue in a large database with many users is the

management of concurrent update problems. This is an
area where GIS poses some more complex problems
than simple alphanumeric applications. The native lock
ing mechanism in standard relational database systems is
based on the 'short transaction'. This means that if an
application tries to access a record which is locked, the
database management system will wait until the lock is
released and then return the data to the application. The
underlying assumption is that the application which has
locked the data will only do so for a short time, a few
seconds at most. However, a record which is extracted
from the GFIS database for update may be checked out
for hours or even days, so this approach is not appropri
ate.

Issues relating to such 'long transactions' are discussed
by Newell and Easterfield (1990). They propose a solu-

MAPPING AWARENESS VOL. 4 NO.6 JUL Y/AUGUST 1990

DATABASES

tion based on version management, which is essentially
an 'optimistic approach' which allows multiple users to
concurrently update their own copies of a set of data and
store both these versions in the database, on the assump
tion that in the majority of cases there will probably not
be any conflict between versions. This approach allows
great flexibility,but also has some risks. The main risk, as
they acknowledge, is that the amount of work submitted
before a conflict is discovered could be large. One of the
implicit assumptions underlying optimistic approaches to
concurrency control is that it should be relatively easy to
modify and re-submit an update job if a conflict occurs. In
GIS this is not generally the case, and weeks' work could
be wasted. In the worst case it could be that important
decisions had been made on the basis of inconsistent
information. This may be an unacceptable risk in many
organisations.

The geoManager locking mechanism
A different approach is taken by geoManager, which

provides some of the features of version management but
which does not incur the risks just mentioned. Whenever
a user requests some data from geoManager to be put
into an IFF, he is asked whether he wishes to update any
of this data. If this is the case, then he is asked to indicate
which objects he wishes to update. The specified objects
within the extraction area are then marked by geo
Manager as checked out for update (a special status
attribute in each object, which is described in more detail
below, is used for this purpose). The user is asked to give
details of the nature of his or her update for the benefit of
other users. Other users are still free to extract this data in
read only mode, but are not allowed to extract any
objects for update which are already checked out. If an
attempt is made to extract an object which is already
checked out for update, then the requestor can find out
who has checked the object out and obtain any informa
tion which was entered about the nature of the update.
The requestor can then contact the person who has
checked out the objects if necessary.

The fact that the database is object-based means that
the minimum possible amount of data can be locked in
order to try to minimise contention. In order to further
reduce the possibility of contention, geoManager pro
vides the capability of carrying out short geographic

transactions using geoManager Graphic Analysis. When
an extract is made to Graphic Analysis Format, only
graphics are extracted, together with a key for each object
which refers to the appropriate set of attributes in the
database. No objects are locked at this stage. Using
Graphic Analysis the user is restricted to performing at
tribute update operations, which can be handled as short
transactions. A user can point to an object on the screen
whose attributes are to be updated. The attributes for this
object are then fetched from the database and the object
is marked as checked out (assuming of course that it is
not already checked out by someone else, in which case
the user can view the attributes but not update them).
The user can then make any updates and these are
returned to the database and the object is checked in
again. This ability to handle both long and short trans
actions is extremely useful in minimising contention.
Furthermore, the same checking out mechanism can also
be used by other applications to enable them to directly
update data stored in geoManager, while ensuring that
data integrity is maintained (this is discussed in more
detail in the section on application integration).

Version management
The GFIS approach also allows a degree of version

management at two levels. First, a GPG user who has
extracted an IFF for update can save a copy of this data in
GPG workspace format in his own personal storage. He
can then create various alternative designs and save each
of those in separate workspaces. He could go on and
create further alternatives from any of these alternatives,
creating a set of workspaces which correspond con
ceptually to the 'version tree' described by Newell and
Easterfield. Each extra workspace duplicates data, but
this will only be temporary. These workspaces are all
accessible only by this user, or by any other user he
chooses to pass them to. The only information the data
base has about this transaction at this stage is the set of
objects which were originally checked out by the user.
When the user decides which alternative should be
passed back to the database he creates an IFF from the
appropriate workspace and passes it back to geo
Manager.

It is at the stage of updating the database that the
second level of version management can be used. When

code level code level

1 I 3

012

00000302

000

10303

000

20313

000

30323

001

30333

002

31001

003

31002

010

21003

010

31013

tt1
01131023

012

31033

013

3

020

2

020

3

021

3

022

3

023

3

Numbering rule for quadrants. Quad marked with (**) is 2-1-0. Order of keys when sorted

(to 3 levels of division).

Figure 3. Method of assigning spatial index keys.

MAPPING AWARENESS VOL. 4 NO.6 JULY/AUGUST 1990

DATABASES

database updates are made they can either be done
immediately, or they can be denoted as 'pending'. For
example, if a new housing estate had been designed but
would not be completed for a year then the updates
showing the layout of the estate could be put into the
database as pending. When pending work is put into the
database, new objects and any modifications to old
objects are stored in addition to all the old objects in that
area. When a user extracts data from geoManager he can
choose to see only current objects, only pending objects,
or current and pending objects together (in which case
any current objects which were updated by the pending
jol;1willbe extracted in their new form). The user who put
t\:'iepending work into the database can subsequently
either cancel the pending work, in which case all the
original objects are left unchanged, or commit the pend
ing work, in which case the pending work becomes
current and any changes to the original objects are made.
This user can also make modifications to the pending
work, but only a single level of pending work is main
tained in the database. In this way geoManager provides
a form of version management at a database level which
is simpler than that proposed by Newell and Easterfield
but easier to manage.

Pending work is marked as such in the database using
the same status field which geoManager uses for indicat
ing whether an object is checked out. This field can take
the following values:
• " - current
• 'C' - checked out for update
• 'P' - pending
• 'A' - current but affected by pending work

Only current objects (which are unaffected by pending
work) can be checked out for update. The status field will
then be changed from ' , to 'C'. If an object is checked
back in again directly the status field willbe reset to ' '. Ifa
set of objects is checked back in as pending then updates
willbe treated as follows. Ifan object is to be deleted then
its status will be set to 'A'. If an object is to be modified
then the original object record willhave its status set to 'A'
and another record will be added with details of the
modified object with a status of 'P'. Ifa new object is to be
added then a new record will be inserted with a status of
'P'. Separate tables maintain lists of all the objects which
belong to each pending retrieval set. To cancel a pending
retrieval set all the objects in that set with status 'P' are
deleted, and all those with status 'A' have this changed to
, '. To commit a pending retrieval set, all objects with
status 'A' are deleted and all objects with status 'P' have
this changed to ' '.

The three types of retrieval mentioned earlier will
retrieve objects with the following status values:

• Current objects only - ' " 'C' or 'A'.
• Pending objects only - 'P'.
• Current and pending objects - ' " 'C' or 'P'.

Only objects with a status of ' , can be checked out for
update.

Summary
In summary, geoManager provides a method of lock

ing at object level to prevent concurrent update. Con
tention problems are minimised in the following ways:

• Locking at object level minimises the amount of data
which needs to be locked for any transaction.

• Read only access is permitted to locked objects.
• Attribute updates ean be handled as short transactions

using geoManager Graphic Analysis.
• When contention does occur, the user who has

checked out the objects which have caused the con
tention can be identified, so that the two users in
volved can try to resolve the situation if necessary.

In addition, geoManager provides the ability to store
pending work in the database alongside current work, so
that users can be aware of work which is in progress.

Data sharing and integration between applications
One of the main advantages of a relational database is

that it is possible for multiple applications to access
common data in a very flexible way. Since all geo
Manager data is stored in standard DB2 tables it can be
easily accessed either by other applications or by flexible
query tools such as QMF (Query Management Facility).
This makes it possible to query attribute data stored in the
GIS from any alphanumeric terminal within an organisa
tion.

There are no real 'issues with regard to other applica
tions reading the the geoManager data, but when it
comes to updating the data then issues relating to long
transactions arise, as was discussed in the section on
concurrent update. Since the updates are being done to
geographic data, which could be undergoing update by a
long transaction via geoManager, it is necessary for the
updating applications to recognise the geoManager status
field and only update objects which are not checked out
for update. Provided this rule is followed it is possible for
other applications to directly update attribute data in the
geoManager tables. Other applications should not, in
general, directly insert records into, or delete records
from, tables which are controlled by geoManager. This is
because information about an object and its relationships
is stored in multiple tables and to ensure data integrity the
addition or deletion of objects should be done via
geoManager. These sort ot" complex data integrity con
straints are known as semantic integrity constraints, which
cannot be enforced automatically within the relational
database model itself, but must be enforced through
applications (see Elmasri and Navathe, 1989). This is the
sort of area where object-oriented databases, which are
currently the subject of much research, may be able to
give the application developer, and database adminis
trator, more freedom in the future, by allowing such
semantic integrity constraints to be stored within the
database itself as 'rules' or 'methods'.

lf non-GIS applications are going to be doing most of
the updating on certain tables then it is possible to leave
these tables outside the control of geoManager (but in the
same database system) and just access the di'lta as
appropriate from geoManager or GPG. For example, one
would probably keep a customer database outside
geoManager but refer to this by storing customer refer
ence numbers in appropriate objects within geoManager.

This is one area where a non-database approach which
used a relational database to store all its alphanumeric
data could provide a similar level of integration for alpha
numeric data. The issues which have already been
mentioned still need to be addressed, such as the
management of long transactions. There is a danger if an

MAPPING AWARENESS VOL. 4 NO.6 JUl Y/AUGUST 1990

DATABASES

appropriate mechanism is not put in place to manage
these that a non-GIS application could change an attri
bute value during the course of a long transaction, in a
way which would conflict with what the GIS user was
doing.

In the area of 'corporate GIS', geoManager Graphic
Analysis gives significant benefits by allowing graphical
data to be accessed by a very large number of users. Any
user with a standard business graphics screen can view
the graphics for a selected area, update related alpha
numeric data, and perform simple forms of analysis. This
type of facility would be much harder to implement if the
graphics were not also stored in the database, especially
as one starts to move to a distributed environment, as
described in the next section.

Figure 2 shows an overview of some applications
which could be integrated with GFIS in a typical environ
ment. TSO, IMS, and CICS are all access methods which
can access the DB2 database using the SQL query
language. QMF (Query Management Facility) is a flexible
query and reporting tool which enables users to analyse
data using either the SQL or QBE (Query By Example)
languages. AS (Application System) is a Decision Sup
port Tool which, in addition to query and reporting
features, provides functions in other areas including
business planning, financial modelling, business graphics,
project control and management and statistical analysis.
AS can run directly against the DB2 database, or against
a flat file such as the geoManager Open Format. The
latter option is particularly useful for doing analysis on
data within a specified geographic area using AS. Any
maps, showing thematic information if appropriate,
which are produced in GPG or geoManager Graphic
Analysis, can be output in a standard graphical format
which can be imbedded in AS reports if desired. These
reports, including graphics, can be circulated to any
number of people using standard office products. This is
just a brief overview of some of the ways that other
standard products can use the GIS data without having to
write any special interfaces, because it is stored in a
standard database management system.

Distributed database
The development of database software which can

manage a database spread across multiple machines is
something which major database vendors, such as IBM,
are putting great efforts into. Various benefits come from
being able to do this, such as being able to store each
district's data locally for improved performance and
availability, whilst still being able to access data from
other districts in a transparent way (see Elmasri and
Navathe for a more detailed discussion). Providing such
distributed capability, whilst still maintaining the same
function to manage data integrity and other issues, is an
extremely complex task. For example, the rollback
capability mentioned earlier must be able to work across
multiple machines. If a complex transaction makes one
update on one machine and is about to make a related
update on a second machine when the transaction fails
(for any reason, such as the failure of either database
system or a network link), then the system must ensure
that synchronisation is maintained between both
machines.

The ability to provide a distributed database, with this
sort of integrity, is perhaps the biggest single argument in
favour of storing all aspects of geographic data in a

standard database management system. The com
plexities of producing a true distributed database
management system are such that it is difficult to see how
any GIS developer could justify taking on this task
independently. If a non-database approach is taken and
some data is stored outside the database management
system then it is not possible for the GIS to exploit any
distributed function provided by the database manage
ment system.

Since geoManager stores all data in DB2 it can auto
matically take advantage of any distributed function in
DB2 as it appears. There is already some basic distributed
function in the latest version of DB2, and it is IBM's
intention to greatly enhance this in future versions, first in
terms of distribution across multiple DB2 systems on
mainframe computers connected over a network, and
ultimately including SQL databases on a whole range of
hardware platforms from mainframes to PS/2s, within the
framework of IBM's Systems Application Architecture
(for further details see IBM, 1988).

Performance

As was stated earlier, the main reason for storing some
data in a separate database is to optimise performance for
graphical display or certain kinds of geographic analysis.
It has also been pointed out already that these sort of
operations are not done directly against data stored in
DB2 by geoManager. Instead, data is extracted from
geoManager into a format suitable for interactive display
and analysis by GPG, geoManager Graphic Analysis or
other GIS packages. Therefore the only performance
question which needs to be examined in comparing the
geoManager approach with a non-database approach is
that of the time taken to retrieve a geographic area from
the moment it is initially requested.

Clearly by using a non-database approach and storing
the graphics in a specialised format suitable for immediate
display, it is possible to achieve a very fast response to
certain types of request. For example, if the data is stored
as a set of regular map tiles then it should be possible to
satisfy a request for a specific map from this set very
quickly. The same is true for a request to view an area
covering a small number of these maps. In an application
where the data viewed is generally quite standard (for
example, where it can be specified as one or more of a
number of layers), and this is generally viewed at a
reasonably constant scale, then this approach is likely to
give good performance in terms of elapsed time from
initial request to initial display.

In a corporate system rather more flexibility is required
because different applications will need to display and
analyse data at greatly differing scales. While some appli
cations may need very detailed data at a large scale, other
applications may require a sparse set of data, perhaps
qualified by attributes, across a much wider area (for
example. one might want to retrieve all crimes committed
between 10 pm and midnight on a Friday or Saturday
night during the last six months in county X). With a map
based (and possibly layered) system it is likely to be
rather difficult to create this type of data set. This is where
an object-based system has an advantage, since this sort
of request is easy to satisfy with an object-based
approach. Of course the extra flexibility provided by an
object-based approach does not come for free, since in
order to display a map at any scale it is necessary to

MAPPING AWARENESS VOL. 4 NO.6 JUl Y/AUGUST 1990

DATABASES

retrieve each individual object in the requested area,
rather than just accessing a single predefined file.
Because of this, the initial retrieval of a geographic area at
a large scale in an object-based system is likely to be
slower than one can achieve with a map-based approach.

Spatial indexing in geoManager
The importance of performance issues has been recog

nised in the design of geoManager, and a major design
point has been to optimise retrieval times from the data
base. In line with the general philosophy of geoManager,
the techniques used have been designed so that they will
exploit as much OB2 function as possible, and also take
advantage of future enhancements. The key to efficient
area retrieval from geoManager is a spatial indexing
system based on a quad tree approach. For a general
discussion of spatial indexing methods, see Samet (1988)
or Vanzella (1988). The specific approach used by
geoManager is similar to that described by Abel and
Smith (1983), generally known as the Smallest Contain
ing Quad Method or MX-CIF quadtree, with suitable
modifications for a relational environment.

A very brief overview of the approach is given here.
The area covered by the application is recursively sub
divided into quad cells to a predefined level. Each quad
cell can be assigned a code as illustrated in Figure 3. A
unique key for each quad cell is given by concatenating
this code with the level of the quad cell in the tree. The
example illustrates this using three levels, but in practice
one would use considerably more than this. The spatial
index key assigned to each object is given by the key of
the smallest quad cell which completely encloses it. The
spatial index key is stored as an attribute of every object
in the database.

This spatial index key has some important properties
which allow us to use it to perform efficient area retrievals
from the database. The single most important property is
that, in general, objects which are geographically close
together in the real world will be assigned spatial index
keys which are similar. To exploit this fact, geoManager
specifies to OB2 that it should use the spatial index key as
a clustering index, which means that it will physically sort
the data records on disk in spatial index key order, and
try to maintain this physical clustering as far as possible
even when records are inserted or deleted. One con

sequence of doing this is that objects which are geo
graphically close together in the real world are, in general,
stored physically close together on disk. This can con
siderably enhance performance when accessing a
number of objects which are geographically close
together, because of the way that disk access works.
When a request is made to read a record from disk a
block of data is read into memory which contains a
number of records, including the one which was re
quested. If a request is made to read another record
subsequently, the system checks whether the requested
record is already in memory because of a previous disk
access. If it is then the record can be returned much more

quickly because it can be read far more quickly from
memory than from disk This technique can be extended
in various ways. One technique is caching, where the disk
subsystem stores large pages of data in memory to
increase the probability that a requested record will be in
memory rather than on disk, and will therefore be able to
be accessed much more quickly. OB2 also has the capa
bility of further improving performance using a technique

called prefetch, which involves asynchronously reading
pages of data in from disk before they are required for
processing. The appropriate pages to read in are deter
mined by looking at the index 'f'hich the query is follow
ing. The geoManager spatial index key allows all these
methods of improving performance to be used auto
matically when doing area retrievals from the database.

As objects are inserted and deleted the physical cluster
ing of objects will gradually be lost. Therefore it is neces
sary to reorganise the tables from time to time to restore
the physical clustering. This is a standard function of
OB2. The OB2 system allows the database administrator
to obtain statistics about each table to enable him to

decide when it is appropriate to reorganise that table.
Another property of the spatial index key which helps

geoManager perform efficient extractions is that the key
for any given quad cell is immediately followed in the
ordered list of keys by all its descendents, that is all
smaller quad cells entirely contained within it. This means
that the quad cells which are candidates for containing
objects in the requested retrieval area typically have key
values which can be specified as a relatively small
number of continuous ranges, rather than a large number
of scattered values, which allows the retrieval to be speci
fied using a relatively small number of SQL queries.
Furthermore, these queries can be executed efficiently
since each one includes a selection qualification which is
a continuous range of values of a field which has a
clustering index defined on it.

A more detailed discussion of the spatial indexing tech
niques used by geoManager is really beyond the scope of
this article. Perhaps the most important thing to note is
that the techniques used are designed to exploit the
standard relational database indexing system as far as
possible, which means that geoManager will automati
cally be able to take advantage of future hardware and
software developments which enhance the performance
of the relational database.

Conclusion

This discussion has looked at a wide range of database
issues which apply to all corporate database systems,
including corporate Geographic Information Systems.
Some ways in which a standard relational database
management system can help to tackle these issues have
been highlighted, as have areas where additional function
must be provided by the GIS. It has been proposed that
many of the benefits which can be provided by standard
relational database management systems can only be
realised by storing all aspects of the geographic data in
the database. This applies most of all to providing dis
tributed database function.

An important distinction has been made between the
storage and management of geographic data and the
manipulation and analysis of geographic data. Many
people have claimed that relational databases are not
suitable for GIS, but they are normally talking about the
manipulation and analysis of geographic data. The main
assertion of this article is that commercial relational data
base management systems can offer significant benefits
for the storage and management of geographic informa
tion, as outlined with reference to the approach taken by
geoManager.

The role of geographic storage and management
systems is likely to become increasingly important as GIS

MAPPING AWARENESS VOL. 4 NO.6 JULY/AUGUST 1990

DATABASES

develops. An increasing number of specialised GISs are
likely to appear which are suitable for specific applications
within an organisation, and it will become increasingly
unlikely that a single GIS will be suitable for all the
manipulation and analysis requirements of an organisa
tion. However, it is vital that all the GIS applications
which are used, as well as non-geographic applications,
have a means of accessing data from a single consistent
database. The trend towards such geographic database
management systems is also likely,to be encouraged as
different organisations seek to solve the problems of
using common databases.

REFERENCES

1. Abel, D.J. and Smith, J.L., A Data Structure and Algorithm Based
on a Linear Key for a Rectangle Retrieval Problem, Computer
Vision, Graphics and Image Processing. Number 24, 1983.

2. Elmasri, Ramez and Navathe, Shamkant B.. Fundamentals of Data
base Systems, Benjamin/Cummings, Redwood City, California,
1989.

3. IBM UK Programming Announcement ZP88-0472, Distributed
Relational Data in Systems Application Architecture, November
1988.

4. Newell. Richard G. and Easterfield, Mark, Version Management
the Problem of the Long Transaction, Proceedings of the Mapping
Awareness Conference, Oxford, January 1990.

5. Samet. Hanan Hierarchical representations of collections of small
rectangles, ACM Computing Surveys, Volume 20, Number 4,
December 1988.

6. Vanzella, Luca, Classification of Data Structures for Thematic Data,
Technical Report TR 88-14, Department of Computing Science,
University of Alberta, June 1988.

The author would like to acknowledge helpful comments given at
various stages in the preparation of this article by David Adler, Steven
Brown, Paul Cocking, Peter Gee, Wilhelm Kerbl, Scott Kutz, Tim Lloyd
and Kurt Mayer.

PETER BATTY is a Systems Engineer in the GIS Market Development
Group at IBM, Warwick.

Editor- We are pleased to print this IBM response to the challenges laid
down in our earlier database feature and in particular, to the article
entitled 'Towards a blueprint for database vendors' which was
described as being 'a valuable step towards a database specification'.
We will be pleased to publish similar contributions from other suppliers
and examples of live applications.

Reprinted from
MAPPING AWARENESS

Published by
MILES ARNOLD, HIGH WINDS, CASSINGTON, OXFORD OX8 1DL

TELEPHONE 0865 880236

MAPPING AWARENESS VOL. 4 NO.6 JUl Y/AUGUST 1990

